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Multiple-scattering theory is here employed to study the scattering of sound by a fluidlike cylinder charac-
terized by an anisotropic mass density tensor. A derivation of the t matrix associated to such acoustic material
nonexisting in nature is here comprehensively derived, and the result is employed to study the pressure field
produced by plane sound waves impinging the cylinder. It is also shown that an acoustic metamaterial or
metafluid can be engineered to exactly match the dynamical properties of the anisotropic fluid by using a
circular cluster made of a two-dimensional sonic crystal with a nonisotropic lattice.
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I. INTRODUCTION

Anisotropy is not a property of ordinary fluids. Aniso-
tropy is a phenomenon commonly related with some kind of
order and, in general, fluid materials are disordered struc-
tures. However, artificial fluids consisting of alternating lay-
ers of two different isotropic fluids were proposed by
Shoenberg1 in 1983. He predicted that this new type of fluid
will behave, in the low-frequency limit, like an anisotropic
acoustic material with a scalar bulk modulus but with dy-
namical mass density and sound speed as both anisotropic.
He also derived the wave equation for the acoustic field in
this anisotropic fluid, which do not exist in nature and is
impossible to fabricate by usual means. The wave equation
has been also derived by using a coordinate transformation
approach.2

The interest in anisotropic fluids was recently boosted be-
cause of their possible applications such as media to control
the flow of sound, in which being the acoustic cloaks is one
the most exciting proposals.3–9 The physical realization of
anisotropic fluids can now be possible thanks to the recent
advances in the field of sonic crystals �SCs�, which are arti-
ficial structures made of sound scatterers periodically distrib-
uted in a fluid or gas background. SCs have been mainly
studied from the 1990s because of their extraordinary prop-
erties for sound attenuation at wavelengths of the order of
the lattice separation between scatterers. More recently,
Cervera and co-workers10 demonstrated that SC can be also
used to build refractive acoustics devices, such as sonic
lenses, for wavelengths large enough in comparison with the
lattice separation between scatterers �homogenization limit�.
This result was supported later by numerical simulations
based on different theoretical approaches.11,12 Particularly,
results obtained in the framework of multiple-scattering
theory demonstrated that SC employed in Ref. 10 defines a
new type of artificial isotropic fluids or metafluids whose
acoustical parameters can be tailored with certain
limitations.12,13 Afterward, it was also predicted that the pos-
sibilities of tailoring for those metafluids even increase by
combining sound scatterers of different elastic parameters in
the SC.14

The possibility of obtaining anisotropic metafluids based
on SC was first proposed by these authors15 who also re-
ported analytical formulas describing their anisotropic pa-
rameters, such as the dynamical mass density and sound
speed, as a function of the scatterers filling fraction. More
recently, we also made a proposal to engineer a two-
dimensional �2D� acoustic cloak by using metafluids, with
SC being the principal ingredient in its construction.5

In acoustics the scattering of sound by anisotropic scatter-
ers is a topic scarcely treated in the literature for obvious
reasons. This is not the case in optics, where the scattering of
light by anisotropic scatterers is a phenomenon already
studied16–18 due to the fact that anisotropic dielectric materi-
als are more common. Although anisotropy has been also
studied for elastic waves in solids,19,20 the scattering proper-
ties of anisotropic bodies is better known for the electromag-
netic case.

In this paper we deeply analyzed the scattering properties
of an anisotropic fluidlike circular cylinder, where the aniso-
tropic parameters �density and speed of sound� are constant
in Cartesian coordinates. These scattering properties are ob-
tained by means of the t-matrix formalism.21 Also, it is
shown that a circular cylinder with such properties can be
designed using the theory developed in Refs. 12–15, where it
was demonstrated that SC in the homogenization limit �low-
frequency regime� can be employed to build acoustic
metamaterials or metafluids with desired dynamic properties.
Finally, in order to verify the theory, the scattered field by
circular cluster made of a 2D sonic crystal is calculated by
the multiple-scattering method and show that, in fact, an an-
isotropic metafluid can be engineered by using SC.

The paper is organized as follows: in Sec. II the wave
equation for anisotropic fluidlike materials is derived from
the long-wavelength behavior of SC, and also the propaga-
tion of cylindrical waves in this medium are analyzed. Sec-
tion III analyzes the scattering of waves by applying the
boundary conditions and obtaining as a result the t matrix of
the anisotropic cylinder. Section IV explains how to physi-
cally realize these types of anisotropic fluid by introducing
metafluids based on SCs, and shows examples that could be
engineered. The paper is summarized in Sec. V and hints on
analytical derivations are given in the Appendix.
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II. SOUND PROPAGATION IN ANISOTROPIC
ACOUSTIC MEDIA

A. Wave equation

The wave equation describing the propagation of sound
waves in anisotropic acoustic media can be obtained by us-
ing a phenomenological argument as follows. Let us assume
that the anisotropic medium is made by placing sound scat-
terers in a nonisotropic periodic lattice and let us also assume
that we work with wavelengths much larger than the lattice
parameter. For example, it has been shown that 2D structured
lattices of solid cylinders periodically arranged in lattices
other than square or hexagonal behave like effective aniso-
tropic fluids in the long-wavelength limit.15 Under these as-
sumptions, both the bulk modulus B and the density � are
periodic functions of the spatial coordinates.

The linear acoustic equations for an inhomogeneous me-
dium are22

�P�r,t� + ��r�
�V�r,t�

�t
= 0, �1a�

�P�r,t�
�t

+ B�r� � · V�r,t� = 0, �1b�

where P describes the pressure field and V is the velocity
vector field.

Now, let us consider that both B�r� and ��r� are periodic
functions of the vector position r. The goal is to find the
form of the equations above in the low-frequency limit; that
is, for the case in which the spatial periodicity defined by the
wavelength is larger than the periodicity of the acoustic pa-
rameters B and �.

Therefore, plane-wave-like solutions can be proposed for
both P and V:

�P�r,t�
V�r,t�

� = �P�k,��
V�k,��

�eik·re−i�t, �2�

where the wave number is a function of the spatial coordi-
nates, k=k�r�. Note that for low frequencies the spatial de-
pendence of k disappears and the solutions become ordinary
plane waves.

The spatial derivatives of functions in Eq. �2� are

�

�xi
�P�r,t�

V�r,t�
� = i�P�r,t�

V�r,t�
��

j

�ij�r�kj�r� , �3�

where the tensorial quantity �ij is defined by

�ij�r� � �ij +
xj

kj�r�
�kj�r�

�xi
. �4�

In the low-frequency limit, this quantity is finite and different
from zero and, as it is shown later, it is responsible for the
anisotropy.

With these definitions Eqs. �1� become

iP�r,t��
l

�kl�r�kl�r� + ��r�
�Vk�r,t�

�t
= 0, �5a�

�P�r,t�
�t

+ iB�r��
k

�
j

�kj�r�kj�r�Vk�r,t� = 0. �5b�

Last equation can be simplified by defining an “effective
particle velocity”

Vj
��r,t� � �

k

�kj�r�Vk�r,t� , �6�

yielding

�P�r,t�
�t

+ iB�r��
j

kj�r�Vj
��r,t� = 0. �7�

This equation is suitable for averaging over the unit cell
defined by the periodic system but not in its present form.
For large wavelengths �homogenization limit� the pressure
field and wave number are expected to be constant in the unit
cell. But the effective particle velocity has an unknown be-
havior due to the quantities �ij, whose dependence in the
spatial coordinates is unknown. Therefore, it is convenient to
divide first by the bulk modulus B, and after that take the
averaging,

� 1

B�r�� �P�r,t�
�t

+ i�
j

kj	Vj
��r,t�
 = 0, �8�

where it has been assumed that in the homogenization limit k
is also constant. Since the bulk modulus does not interact
with the periodicity of the lattice, the averaging can be easily
performed.

For the case of a single scatterer per unit cell

� 1

B�r�� =
1

Vd
�

cell

1

B�r�
dV =

f

Ba
+

1 − f

Bb
, �9�

where Ba and Bb are the bulk modulus of scatterer and back-
ground, respectively. Quantity f defines the filling fraction of
the scatterer; i.e., the area of the scatterer divided by the area
of the cell. This result is independent of the dimensionality
of the problem and it is also independent of the scatterer’s
shape.

Defining the effective bulk modulus B� as

1

B�
�� 1

B�r�� =
f

Ba
+

1 − f

Bb
, �10�

and the cell-averaged particle velocity as

v j
��r,t� � 	Vj

��r,t�
 , �11�

the final form of Eq. �1� is

1

B�

�P�r,t�
�t

+ i�
j

kjv j
��r,t� = 0,

or
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1

B�

�P�r,t�
�t

+ � · v��r,t� = 0, �12�

which has the same form as Eq. �1� but with a constant bulk
modulus. Now it is also similar to the equation for a homo-
geneous medium.

This procedure can be also applied to Eq. �5� but working
with Vj

� instead. After multiplying by �kj and adding for all k,

iP�r,t��
l

�
k

�kj�r��kl�r�kl�r� + ��r�
�Vj

��r,t�
�t

= 0. �13�

This equation cannot be averaged because of the product
between ��r� and the temporal derivative of Vj

��r , t�. We di-
vide first by the density and, after averaging, we get

iP�r,t��
�

� j�
�−1k� +

�v j
��r,t�
�t

= 0, �14�

where � j�
�−1 are defined as

� j�
�−1 � ��−1�r��

k

�kj�r��k��r�� . �15�

These are the matrix elements of the reciprocal of the
effective-mass density tensor; i.e., ��� j�

�−1��i
� =� ji.

Therefore, Eq. �14� can also be cast into

ik�P�r,t� + �
j

��j
� �v j

��r,t�
�t

= 0. �16�

In vectorial differential form

�P�r,t� + ��:
�v��r,t�

�t
= 0. �17�

By solving for the pressure field we arrive to the wave
equation

�
i,k

�ik
�−1 �2P

�xk � xi
−

1

B�

�2P

�t2 = 0, �18�

which is obviously anisotropic due to the presence of the
cross terms in the partial derivatives.

By trying plane-wave solutions of the form

P�r,t� = P�k,��eik·re−i�t, �19�

the relationship between the frequency and the wave number
is finally obtained:

�2 = k2B��
i,k

�ki
�−1 cos �i cos �k, �20�

where the wave vector components have been assumed with
the form ki=k cos �i.

Expression �20� lets us conclude that the relation between
the effective sound speed tensor cki

� and the reciprocal of the
mass density tensor �ki

�−1 is similar to that for the isotropic
case23

cki
�2 = B��ki

�−1. �21�

In the rest of the paper asterisks will be omitted for simpli-
fication purposes unless it is specifically indicated.

B. Cylindrical waves in anisotropic fluidlike materials

The spatial part of an anisotropic plane wave is

P�r� = P�k�eik·r. �22�

If there is no z dependence of P, the problem reduces to a 2D
problem in the XY plane, where the wave vector k
=k����cos � , sin �� with k���=� /c��� defines a wave front
whose direction of propagation makes an angle � with the x
axis.

In this work only nondivergent fields are considered and,
therefore, only real angles � are considered in the integration
above. As a consequence the quantity P�k�= P�� ,�� can be
Fourier expanded

P��,�� =
1

2�
�

s

i−sBs���eis�. �23�

By inserting this expansion into Eq. �22� and after inte-
gration over all � angles, a general pressure wave is obtained

P�r� = �
s

Bs���
i−s

2�
�

−�

�

eik·reis�d� . �24�

This expansion is equivalent to

P�U� = �
s

BsJs
a��r/c,��eis�, �25�

where the anisotropic cylindrical function Js
a has been de-

fined as

Js
a��r/c,�� �

i−s

2�
�

−�

�

eik·reis��−��d� . �26�

Notice that for an isotropic medium the function Js
a reduces

to the Bessel function of order s.24

III. SCATTERING OF SOUND WAVES
BY AN ANISOTROPIC FLUIDLIKE CYLINDER

A. Boundary conditions

Boundary conditions at the interface of two isotropic flu-
ids are the continuity of the pressure field P and the normal
component of the particle velocity field v, respectively:

P+ = P−, �27a�

n · v+ = n · v−, �27b�

where n is the unitary vector normal to the boundary surface.
These conditions can be generalized for anisotropic fluid-

like materials but the tensorial nature of the dynamical mass
density tensor should be taken into account.

From Eq. �17� in stationary form the particle velocity field
is

v = −
i�−1

�
� P , �28�

where the reciprocal of the dynamical mass density �−1 is a
tensor and, then, the normal component of the particle veloc-
ity is

SOUND SCATTERING BY ANISOTROPIC METAFLUIDS… PHYSICAL REVIEW B 79, 174104 �2009�

174104-3



n · v = − n ·
i�−1

�
� P = −

i

�
�
k,l

nk�kl
−1�P

�xl
. �29�

In polar coordinates:

n · v = −
i

�
��rr

−1���
�P

�r
+

1

r
�r�

−1���
�P

��

 , �30�

in which

�rr
−1��� = �s+

−1 + �s−
−1 cos 2� + �a+

−1 sin 2� , �31a�

�r�
−1��� = − �s−

−1 sin 2� + �a+
−1 cos 2� , �31b�

and

�s	
−1 =

�xx
−1 	 �yy

−1

2
, �32a�

�a	
−1 =

�xy
−1 	 �yx

−1

2
. �32b�

From Eq. �15� it is deduced that �xy
−1=�yx

−1, and then

�a+
−1 = �xy

−1, �33a�

�a−
−1 = 0. �33b�

Technical details of how to calculate the elements of matrix
density are given in Ref. 15.

B. t matrix of an anisotropic fluidlike cylinder

Let us consider a cylinder of radius R, anisotropic mass
density �ij, and bulk modulus Ba. It is embedded in a homo-
geneous isotropic fluid of acoustic parameters �b and Bb.
When some arbitrary incident field P0, given by

P0�r,�;�� = �
q

Aq
0Jq��/cbr�eiq�, �34�

impinges the cylinder, a scattered field Psc is excited,

Psc�r,�;�� = �
q

AqHq��/cbr�eiq�, �35�

where Hq are the Hankel functions.
This section is devoted to obtaining the t matrix that re-

lates coefficients Aq and Aq
0,21

Aq = �
s

TqsAs
0, �36�

where coefficients Tqs define the t matrix elements.
Section I demonstrated that sound waves traveling inside

an anisotropic fluid propagate with a speed that is angle de-
pendent,

c2��� = �
i,j

cij
2 cos �i cos � j , �37�

where tensor cij already appeared in Eq. �21�.
For positions outside the cylinder, r
R, the total field P

is obtained by adding the incident and scattered fields:

P�r,�;�� = �
s

As
0Js�kbr�eis� + �

s

AsHs�kbr�eis�, �38�

with kb as the wave vector in the propagating medium kb
=� /cb.

Inside the cylinder, r�R, the proposed solution for wave
propagation inside the cylinder is a linear combination of
plane waves of the form

P�r,�;�� = �
s

BsJs
a�kr,��eis�, �39�

where

Js
a�kr,�� =

i−s

2�
�

−�

�

exp�i��r/c����cos�� − ���eis��−��d� ,

�40�

and k is the wave vector inside the cylinder, k=� /c���. Note
that the anisotropy is embedded in k.

Integral is performed for all the angles � real, excluding
angles with imaginary part. Evanescent modes are excluded
because we are only interested in the field inside the cylinder
with no sources. If we were interested in scattered fields in
the anisotropic medium, the evanescent modes should be
taken into account.

Boundary conditions in Eqs. �27a� and �27b� become

�
s

As
0Js�kbR�eis� + �

s

AsHs�kbR�eis� = �
s

BsJs
a��R/c,��eis�,

�41a�

kb

�b

�

��kbr���s

As
0Js�kbr�eis� + �

s

AsHs�kbr�eis�

r=R

= �
s

Bsvr
s,

�41b�

where

vr
s = ��rr

−1���
�

�r
+

1

r
�r�

−1���
�

��



r=R

Js
a��r/c,��eis�.

Radial functions on the right side of both equations are
coupled with the angular variable �. Now it is not possible to
just cancel the factors eiq�. After multiplying both equations
by 1

2�e−iq� and integrating from −� to �,

Aq
0Jq�kbR� + AqHq�kbR� = �

s

NqsBs, �42a�

Aq
0Jq��kbR� + AqHq��kbR� = �

s

MqsBs, �42b�

where the � implies derivation with respect to the argument
and

Nqs =
1

2�
�

−�

�

Js
a��R/c,��ei�s−q��d� , �43a�

DANIEL TORRENT AND JOSÉ SÁNCHEZ-DEHESA PHYSICAL REVIEW B 79, 174104 �2009�

174104-4



Mqs =
�b

2kb�
�

−�

� ��rr
−1���

�

�r
+

1

r
�r�

−1���
�

��



r=R

� �Js
a��r/c,��eis��e−iq�d� . �43b�

Technical details of how to calculate these matrix elements
are given in Appendix.

By using the relationship

Jq�kbr�Hq��kbr� − Jq��kbr�Hq�kbr� =
2i

�kbr
, �44�

together with Eqs. �43a� and �43b� the following relations are
obtained

Aq
0 = −

i�kbR

2 �
s

�Hq��kbR�Nqs − Hq�kbR�Mqs�Bs, �45�

Aq =
i�kbR

2 �
s

�Jq��kbR�Nqs − Jq�kbR�Mqs�Bs. �46�

By defining the matrices

Hqs �
i�kbR

2
�Hq��kbR�Nqs − Hq�kbR�Mqs� , �47a�

Jqs �
i�kbR

2
�Jq��kbR�Nqs − Jq�kbR�Mqs� . �47b�

Equations above can be cast in a matrix form,

A0 = − HB, �48�

A = JB, �49�

A = − JH−1A0, �50�

so that the t matrix of the cylinder is given by

T = − JH−1. �51�

As a numerical application of this t matrix we have consid-
ered the case of an anisotropic cylinder with parameters Ba
=1.36Bb, �xx=1.52�b, and �yy =2.2�b. The amplitude of the
total pressure along the x direction, �P�r ,�=0��, is obtained
from Eqs. �38� and �39�. Figure 1 plots the results for differ-
ent orientations of the cylinder with respect to the x axis. The
results are obtained by considering an incident sound plane
wave with 
=R /2. It is clearly shown that the scattering
properties of the cylinder effectively depend on its orienta-
tion with respect to the excited sound that is kept constant.

IV. PHYSICAL REALIZATION: METAFLUIDS
BASED ON SONIC CRYSTALS

Section II demonstrated that a periodic arrangement of
sound scatterers can lead to anisotropic fluidlike behavior.
Moreover, analytical expressions for the effective acoustic
parameters of anisotropic metafluids based on 2D arrays of
elastic cylinders were already reported by these authors.15

Therefore, it is expected that, when an infinite periodic sys-

tem is cut with a circular shape, the resulting cluster of cyl-
inders should behave in the low-frequency limit such as an
anisotropic fluidlike cylinder with the same dynamical prop-
erties than that of the infinite medium.

In previous works the authors analyzed finite-size effects
such as ordering/disordering in the cluster12,13 or the depen-
dence of the effective parameters as a function of the cluster
size.25 It was demonstrated that, for isotropic lattices, the
acoustic parameters of the cluster are the same as that of the
infinite medium when the cluster is large enough. Now it is
shown below that the same property is also accomplished for
the case of anisotropic lattices.

As an example let us consider the case of a 2D lattice of
rigid cylinders in which the lattice vectors a1 and a2 form an
angle �=75�, and the ratio between their moduli is b /a=2,
that is,

a1 = ax̂ , �52a�

a2 = b cos �x̂ + b sin �ŷ � 0.52ax̂ + 1.93aŷ . �52b�

The filling fraction of this lattice is f =�R2 / �ab sin ��
= �� /2 sin ���R /a�2, where R is the cylinder’s radius. The
condition of maximum packing �closed packing� is achieved
for R=0.5a that implies fCP=0.406. The assumption of rigid
cylinders �i.e., infinite mass� is taken for numerical simplifi-
cations

Figure 2 shows the behavior of the effective acoustic pa-
rameters for this anisotropic 2D lattice �see the inset� of rigid
cylinders in a homogeneous isotropic fluid of parameter Bb
and �b as a function of its filling fraction. It is observed that
the resulting metafluid obtained by using that anisotropic lat-
tice is also anisotropic because of the different values taken
by magnitudes such as �xx and �yy for the same f . Note that
cij

� and �ij
� are related through Eq. �21�. Therefore, it is

FIG. 1. �Color online� Amplitude of the total pressure produced
by an incident sound plane wave impinging from the left over an
anisotropic cylinder of radius R placed at the origin of coordinates.
The pressure is represented along the x axis in normalized units.
The vertical axis represents the rotation angle � of the cylinder with
respect to the x axis. The wavelength of the incident field is 

=R /2. The black dashed line defines the border of cylinder.
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expected that a finite cluster �of circular shape� based on this
SC will behave dynamically as an anisotropic fluidlike cyl-
inder with the same acoustic parameters than that obtained
for the infinite lattice �see Fig. 2�.

To verify the last conclusion we simulate the scattering
properties of an anisotropic fluid cylinder with parameters
Ba=1.374Bb, �xx

−1=0.649�b
−1, and �yy

−1=0.424�b
−1 in order to

compare them with that of a metafluid based on SC with the
same anisotropic parameters. The vertical arrow in Fig. 2
defines the filling fraction of the lattice producing a metafluid
with the same anisotropic parameters �symbols� as that of the
homogeneous anisotropic cylinder.

Figure 3 shows a comparison between both field distribu-
tions near �and inside� an anisotropic fluidlike cylinder �see
Fig. 3�a�� and the corresponding metafluid made of 657 rigid
cylinders �see Fig. 3�b��. As incident field we have consid-
ered a sound plane-wave incident from the left, with 

=R /4�Reff /4, where R and Reff are the radii of cylinder and
cluster, respectively. For the case of the anisotropic fluid cyl-
inder, the field distribution has been obtained by using the t
matrix described in Sec. III. For the cluster the map field was
obtained by the multiple-scattering method.12,13 It can be
shown how both field distributions are practically the same
even at the interior of the circle. However, additional diffrac-
tion effects appear for the case of the cluster metafluid. Let
us point out that the working wavelength in terms of the
lattice parameter is 
=5a. Therefore the homogenization
condition established in our previous work12 is accom-
plished, i.e., 
�4a.

For the sake of its comparison, we have also studied the
case of a rectangular lattice, i.e., when �=90° and b=2a.
Figure 4 depicts the behavior of the acoustic parameters for
this new metafluid. The behavior is slightly different to that
of the previous case because there is only a small variation in
the geometry in the new anisotropic 2D lattice �see inset�.

FIG. 3. �Color online� �a� Pressure scattered by an anisotropic
fluidlike cylinder for an impinging plane wave propagating along
the x axis such that kR=8�, and with acoustic parameters. �b� Mul-
tiple scattering simulation for the same plane wave impinging over
a cluster of rigid cylinders of radius R0=0.41a embedded in the
two-dimensional lattice described in Fig. 2. The wavelength of the
field also satisfies kReff�8�. The effective parameters for this fill-
ing fraction are the same as that of the anisotropic cylinder in �a�.

FIG. 2. �Color online� Effective parameters of a 2D sonic crystal
of rigid cylinders as a function of the lattice filling fraction. The
lattice vectors make an angle of �=75° and the ratio of their modu-
lus is b /a=2.

FIG. 4. �Color online� Effective parameters of a two-
dimensional sonic crystal of rigid cylinders as a function of the
lattice filling fraction. The lattice vectors make an angle of �
=90° and the ratio of their modulus is b /a=2.
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Now the close packing is achieved for fCP=0.393. As in the
previous lattice, it can be shown how the component along x
of the sound speed tensor changes slightly as a function of
filling fraction while the y component suddenly drops to zero
when the nearest neighbors cylinders along x touch. How-
ever, the magnitudes �xx-�yy are larger now for the same f .
Therefore, this system represents a metafluid that is more
anisotropic than that obtained by the nonrectangular lattice.
Regarding the effective bulk modulus, note that its behavior
as a function of filling fraction is similar to that in Fig. 2
because the lattice vectors in both cases have the same ratio
b /a between moduli.

Figures 5 and 6 give 2D maps of total pressure field am-
plitudes obtained when a sound plane-wave incident from
the negative x axis impinges the cylinder or the cluster. Fig-
ure 6 represent the cases in which the cylinder and the cluster
are rotated 90° with respect to those represented in Fig. 5.
The working wavelength is in this case twice than that used
in Fig. 3, i.e., 
=10a, and the homogenization condition is
also guaranteed. The selected parameters of the nonexisting
anisotropic fluid cylinder are Ba=1.357Bb, �xx

−1=0.659�b
−1,

and �yy
−1=0.455�b

−1. These parameters are obtained with a
metafluid cluster made of 657 rigid cylinders arranged on a
rectangular lattice with f =0.263 �see the arrows in Fig. 4�.
Note in Fig. 5 how the highly collimated beam observed in
the far field when cylinder and cluster are both oriented
along x becomes a shadow when both are rotated �=90°.
This is a demonstration of the strong anisotropic effects ob-
tained by these types of lattices. Moreover, Fig. 6 shows that
a strong focusing effect appears near the cylinder and cluster

surfaces. This phenomenon is obtained because of incident
wave encounters with the cylinder oriented along the direc-
tion in which the component of the mass density tensor is
huge. These extraordinary properties could be used to design
tunable acoustical devices based on these artificial acoustic
structures named as metafluids.

V. SUMMARY

We have reported a comprehensive derivation of the t
matrix for an anisotropic fluidlike cylinder. This formulation
is of extraordinary interest for studying the recently intro-
duced acoustic metamaterials or metafluids that, thanks to
their anisotropic properties, makes possible development of
exciting new acoustical devices such as acoustic cloaks.3–9

Also, we have shown that anisotropic metafluids can be ob-
tained by exploiting the homogenization properties of SC
made of anisotropic lattices of rigid cylinders. Particularly,
we have shown that the scattering properties of nonexisting
anisotropic fluid cylinder can be exactly reproduced by
metafluids based on SC.
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APPENDIX: NUMERICAL CALCULATION
OF THE t MATRIX

The matrix elements Nqs and Mqs must be evaluated in
numerical simulations. However their expressions in Eqs.

FIG. 5. �Color online� �a� Map of the total field scattered by an
anisotropic fluidlike cylinder. The impinging sound wave propa-
gates along the x axis with kR=4�. �b� Multiple scattering simula-
tion for the total field scattered by the metafluid made of a cluster of
657 rigid cylinders arranged in the 2D lattice described in Fig. 4.
The metafluid has the same parameters than in �a�.

FIG. 6. �Color online� ��a� and �b�� Total pressure 2D maps
calculated with same conditions as in Fig. 5 but now the cylinder
and cluster are rotated 90°.
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�43a� and �43b� are not appropriated for an easy computation
because it requires a double integration that is very ineffi-
cient. This Appendix demonstrates that these elements can be
expressed as integrals of Bessel functions.

1. Calculation of Nqs

By using the integral form of Js
a the elements Nqs can be

expressed as

Nqs =
1

2�
�

−�

�

d�
i−s

2�
�

−�

�

exp�i��r/c�cos�� − ���

�eis��−��d�ei�s−q��. �A1�

If the integration is made first with respect to �, reordering
the terms, one finds

Nqs =
iq−s

2�
�

−�

�

ei�s−q��d�
i−q

2�
�

−�

�

exp�i��r/c�cos�� − ���d�

�e−iq��−��. �A2�

Note that, as c is function of � and not of �, the above
equation is equivalent to

Nqs =
iq−s

2�
�

−�

�

Jq��r/c�ei�s−q��d� . �A3�

2. Calculation of Mqs

These elements do not easily simplify because of the de-
rivatives that have to be performed. It is convenient to split
them into

Mqs = Iqs
�r� + Iqs

���, �A4�

where

Iqs
�r� =

�b

2kb�
�

−�

� ��rr
−1���

�

�r



r=R

�Js
a��r/c,��eis��e−iq�d� ,

�A5�

Iqs
��� =

�b

2kb�
�

−�

� �1

r
�r�

−1���
�

��



r=R

�Js
a��r/c,��eis��e−iq�d� .

�A6�

Applying the differential operators and using the integral
definition of Js

aeis� given by Eq. �26�, and reminding that
kb=� /cb, it is found that

Iqs
�r� =

i−s

�2��2�
−�

� �
−�

� i�bcb

c���
�rr

−1 cos�� − ��

�exp�i��R/c�cos�� − ���eis�e−iq�d�d� , �A7�

and

Iqs
��� =

i−s

�2��2�
−�

� �
−�

� i�bcb

c���
�r�

−1 sin�� − ��

�exp�i��R/c�cos�� − ���eis�e−iq�d�d� . �A8�

But, it can be shown that

�rr
−1 cos�� − �� + �r�

−1 sin�� − ��

= �s+
−1 cos�� − �� + �s−

−1 cos�� + �� + �a+
−1 sin�� + �� , �A9�

therefore, the sum of Iqs
�r� and Iqs

��� and then Mqs can be ex-
pressed as a sum of the following three integrals

Iqs
�1� =

i−s

�2��2�s+
−1�

−�

� �
−�

� i�bcb

c
cos�� − ��

�exp�i��R/c�cos�� − ���eis�e−iq�d�d� , �A10�

Iqs
�2� =

i−s

�2��2�s−
−1�

−�

� �
−�

� i�bcb

c
cos�� + ��

�exp�i��R/c�cos�� − ���eis�e−iq�d�d� , �A11�

Iqs
�3� =

i−s

�2��2�a+
−1�

−�

� �
−�

� i�bcb

c
sin�� + ��

�exp�i��R/c�cos�� − ���eis�e−iq�d�d� . �A12�

Defining

SCp�x� =
1

2ip �eix + �− 1�pe−ix�;p = 0,1, �A13�

the integral,

�
−�

�

SCp�� 	 ��exp�i��R0/c�cos�� − ���eiq��−��d� ,

�A14�

can be expressed as a function of Bessel functions

2�iq	1

2ip �ei��	��Jq	1��R0/c� − �− 1�pe−i��	��Jq�1��R0/c�� ,

�A15�

then the three integrals become

Iqs
�1� =

i−�s−q�

2�
�b�s+

−1�
−�

� cb

c

1

2
�Jq−1��R/c� − Jq+1��R/c��ei�s−q��d� ,

�A16a�

Iqs
�2� =

i−�s−q�

2�
�b�s−

−1�
−�

� cb

c

1

2
�e−2i�Jq−1��R0/c�

− e2i�Jq+1��R0/c��ei�s−q��d� , �A16b�

Iqs
�3� =

i−�s−q�

2�
�b�a+

−1�
−�

� cb

c

i

2
�e2i�Jq+1��R0/c�

+ e−2i�Jq−1��R0/c��ei�s−q��d� . �A16c�
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By adding the three terms, we arrive at

Mqs =
i−�s−q�

2�
�

−�

� cb

c
ei�s−q��d���b�rr

−1���
�Jq��R/c�
���R/c�

+ i�b�r�
−1�� + �/2�

qc

�R
Jq��R/c�
 . �A17�

This expression is more appropriate for numerical computations.
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